
Journal of Advanced Engineering Research

ISSN: 2393-8447

 Volume 9, Issue 1, 2022, pp.01-05

Research Article 1 www.jaeronline.com

A Comparative study of inheritance in C++ and Java

Charanpreetkaur1,*

1Department of Computer Science and Engineering, Chandigarh University, Gharuan, India

*Corresponding author email: charanpreete6227@cumail.com

ABSTRACT

For reusability and achieving run-time polymorphism, Inheritance is one of the most important features of object-oriented

programming. Java and C++ both are object-oriented programming languages and support inheritance. However, their way

of inheriting classes is different from each other in some aspects. This paper articulates, the comparison of inheritance in

java and C++ on the basis of eleven parameters.

Keywords - C++, Java, derived class, base class.

1. INTRODUCTION

Inheritance is one of the important features of Object-

Oriented Programming (OOP). Inheritance allows one

object to acquire the properties and behavior of another

object, just like, in human beings, child acquires the

properties and behavior of his parents and grandparents.

C++ and Java are the two object-oriented programming

languages. Obviously, both are having the feature of

inheritance. However, their way of inheriting is different

with some aspects.

1.1 Terminologies used in Inheritance

1.1.1 Class

This is a blueprint/framework which

encapsulates the data members and their

associate function together. Data members are

the variables that declare inside the class. As

you can see in Fig 1. id and name are the data

members and the minus (-) sign signifies that

these members are private, whereas getdata ()

and show_data () are the functions. The Plus

(+) sign signifies that these are public

members. Data members are used to define

the properties of objects whereas member

functions are used to define the behavior of

objects. They declared inside the class to

access its member variable.

1.1.2 Object

This is the instance of the class. One class can

have many instances(objects).

1.1.3 Super Class

The class which is being inherited is called a

super-class. Also known as parent class or

base class.

1.1.4 Sub Class

The class which acquires the properties of

another class is called a sub-class. It is also

known as a derived class or child class.

1.1.5 Access Specifiers

Access specifiers are used to define the scope

of the member of class. In, General there are

three access specifiers, i.e., public, private and

protected. However, java is having four access

specifiers include default.

1.1.6 Object Class

This is the root class in java, inherited by all

the classes. Therefore, there is a single tree of

classes in java.

Figure 1. Class and Objects

1.2 Objective of Inheritance

• To achieve Runtime polymorphism

• To Reuse the code

2. TYPES OF INHERITANCE

There are five types of inheritance supported by C++.

These types have mentioned the Table 1. Java does not

mailto:charanpreete6227@cumail.com

Charanpreetkaur / Journal of Advanced Engineering Research, 2022, 9 (1), 01-05

Research Article 2 www.jaeronline.com

support multiple and hybrid inheritance. So, we can say

that are only three types of inheritance in java. However,

in java interfaces are used to achieve multiple and hybrid

inheritance.

Table 1. Types of Inheritance.

Types of

Inheritance
Description Diagram

Single Level

Inheritance

An object

acquires the

properties of

another single

object, as you

can see in Fig

2.

Figure 2. Single Level Inheritance.

Multilevel

Inheritance

As shown in

Fig 3., in

multilevel

Inheritance, an

object acquires

the properties

of another

object which

itself acquires

the properties

of another

object.

Figure 3. Multilevel Inheritance

Multiple

Inheritance

In multiple

inheritance, an

object acquires

the properties

of more than

one object, as

mentioned in

Fig 4.

Figure 2. Multiple Inheritance

Hierarchical

Inheritance

As shown in

Fig 5.,

Hierarchical

inheritance is

achieved when

an object is

being inherited

by a number of

objects, and

further, that

inherited object

is being

inherited by

another number

of objects, and

so on.

Figure. 3. Hierarchical

Inheritance.

Hybrid

Inheritance

A combination

of more than

one inheritance

is known as

Hybrid

Inheritance. In

Fig 6.

Hierarchical

and Hybrid

inheritance is

combined to

achieve Hybrid

Inheritance.

Figure 6. Hybrid Inheritance.

3. ACCESSIBILITY OF BASE CLASS

MEMBERS IN CHILD CLASS

Members of base class can be access with the object of

base class as well as with the object of child class.

However, java and C++ provide the restrictions in this

concept with the help of access specifiers (public,

private, and protected) mentioned in Table 2(a)and Table

2(b).

Note: child class members cannot be accessed via the

base class object.

Table 2(a). Accessibility of base class members with

object

Base Class Members’

Access Specifier

Accessible with

base class object

Accessibility with

child class object

Private Not Accessible Not Accessible

Public Accessible Accessible

Protected Not Accessible Not Accessible

Table 3(b). Accessibility of base class members inside

other classes

Base Class

Members’

Access

Specifier

Accessibility

inside the base

class

Accessibility

inside the

derived class

Accessibility

inside another

class

Private Accessible Not Accessible Not Accessible

Public Accessible Accessible Accessible

Protected Accessible Accessible Not Accessible

4. MODES OF INHERITANCE IN C++

Public, private, and protected are the three modes of

inheritance in C++. By default, the mode of inheritance

is private. When the mode of inheritance is private or

protected, the access specifiers of all the public and

protected members changes in the derived class.

Charanpreetkaur / Journal of Advanced Engineering Research, 2022, 9 (1), 01-05

Research Article 3 www.jaeronline.com

However, sometimes, the access specifier of a public or

protected member of the base class may need to restore

in the derived class. This can be done by declaring such

members explicitly with its original access specifier.

Table 4. Effect of Inheritance on the accessibility of

members

Mode of

Inheritance

Private

members

Public

members

Protected

member

Child class

publicly inherits

the base class

Private Public Protected

Child class

privately

Inherits the base

class

Private Private Private

Child class

protectively

inherits base

class

Private Protected Protected

From table 3, this is concluded that the private members

cannot be inherited as their accessibility does not affect

with the mode of inheritance.

5. AMBIGUITY IN INHERITANCE

Ambiguity is the problem of duplicity due to which

compiler is unable to call the appropriate member of the

class. In C++, Ambiguity can be resolved with the help

of a virtual base class and scope resolution operator.

However, in java, due to ambiguity problems, multiple

inheritance is not included. However, interfaces are used

to achieve multiple inheritance.

5.1 Ambiguity in Multiple Inheritance

Let us suppose that there is the same function available

in two different parent classes of a single derived class.

As per the rule of inheritance, the two same functions of

the base classes are being inherited by the child class. In

this case, the compiler cannot find out which function has

to call.

Figure 4. Ambiguity in Multiple Inheritance

5.2 Ambiguity Hybrid Inheritance

In hybrid inheritance, ambiguity arises when a base class

inherited twice by a child class. For example, in Fig 8.

Class A is inherited by Class B and Class C. Both Class

B and Class C has the properties of Class A, which are

further inherited by class D. members of Class A are

indirectly inherited two times by Class D through Class

B and Class C.

Figure 5. Ambiguity in Hybrid Inheritance

6. INHERITANCE OF OBJECT CLASS

In java every class is a child class of object class which

is declared under “java. Lang” package. When we create

a single class in java it directly inherits the object class.

Whereas, if we “extends” one class from another then

that class indirectly inherits the object class. So, we can

say that their a root class in java, i.e., Object class all the

other classes are a child of this class. Therefore, there is

a single tree of classes in java. Also, the Object class has

many inbuilt methods that we can use to fulfill the

requirement.

However, if we talk about C++, there is no such object

class. Every class is individual. So, when we use the

concept of inheritance in C++, there is a forest of classes.

Figure 6. Object Class in java.

7. ORDER OF CONSTRUCTOR AND

DESTRUCTOR CALL DURING INHERITANCE

Constructor is used to initialize the data members object.

When a class inherits another class, the data members of

Charanpreetkaur / Journal of Advanced Engineering Research, 2022, 9 (1), 01-05

Research Article 4 www.jaeronline.com

base class will become the data members of the child

class. Child class data members are obviously initialized

by the base class constructor, however, to initialize the

data member of the base class, the base class constructor

should call first.

A destructor is a special function that is used to destroy

an object. When the object scope ends, the destructor will

automatically be called. If a class inherits another class

the destructor of the child class will call first and then the

base class constructor will call. The order is the reverse

of the order of the constructor call during inheritance.

Table 5. Comparison of Java and C++ based on Inheritance.

Parameter C++ Java Explanation

Keyword/o

perator

Used

colon (:)

extends

keywor

d

Java use extends/implements

keyword for inheritance whereas

C++ uses colon operator to

inherit the classes

Single

Level

Inheritance

supported

Yes Yes
Both java and C++ support

Single Level Inheritance

Multilevel

Inheritance

supported

Yes Yes
Both java and C++ support

multilevel Inheritance

Multiple

Inheritance

supported

Yes
No

C++ supports multiple

inheritance because ambiguity

can be resolved by the scope

resolution operator.

However, Java does not,

because there is no scope

resolution operator in java to

resolve the ambiguous issue.

However, it can be achieved by

using the interface.

Hierarchica

l

Inheritance

supported

Yes Yes

Both java and C++ support

Hierarchical Inheritance.

Hybrid

Inheritance

supported

Yes
may or

may not

If hybrid inheritance is the

combination of multiple

inheritance with any other

inheritance, then, java will not

support otherwise, it can be

achieved.

Protected

Access

Specifier

Yes Yes

The meaning of protected access

specifier in java is different from

C++. in Java, protected members

of a class “A” are accessible in

other class “B” of the same

package, even if B doesn’t

inherit from A (they both have to

be in the same package).

Whereas, in C++ protected

members of the class are only

visible to the child class.

Accessibilit

y of

ancestor’s

member

Directly
Indirectl

y

In C++, Grandparent members

can be directly accessed by the

scope resolution operator.

However, in java grandparent

members can be indirectly

accessed through the parent class

and super keyword.

Default

constructor

Automatical

ly

Automa

tically

Like C++, in java parent call

default constructor is

automatically called by the child

class.

Parameteri

zed

constructor

Initializer

list

Super

keywor

d

In java, the super keyword is

used to represent the parent

class.

8. CONCLUSION

From the review, it is concluded that there is lots of

difference in inheritance in java and C++. In java,

multiple inheritance cannot be performed. However, it

can perform with the help of interfaces. Interfaces are

used to achieve 100% abstraction. Also, there is no root

class, i.e., object class in C++, due to which C++ has a

forest of inherited classes. Whereas in java every single

class is a child class of the root class, i.e., object class.

There is one more important point to note, java has a

super keyword to represent the base class, whereas in

java there is no such keyword. The super keyword is used

to call the parent class constructor and is automatically

included by the compiler as a first line in the child class's

constructor. So, it is concluded that java inheritance is

well defined and organized as compared to C++.

REFERENCE

[1] M. R. S. RAUT, "Research Paper on Object-Oriented

Programming (OOP)," International Research Journal of

Engineering and Technology (IRJET), 2020 pp. 1452-

1456 .

[2] T. A. Ines Ayadi and Noe''mie Simoni, "SLA approach

for "cloud as a Service", IEEE Sixth International

Conference on Cloud Computing, Santa Clara, CA, USA,

2013.

[3] R. Sharma, "A Review on Cloud Computing- An

Emerging Technology," International Journal of

Scientific & Engineering Research, 2013, pp. 2120-2124.

[4] K. Rohit, Data Structures and Object Oriented

Programming with C++ (For Anna University), Vikas

Publishing House Pvt Limited, 2010.

[5] M. M. J. Mrs. Kanchanmala D Talekar, "Inheritance in

java," in International Research Journal of Engineering

and Technology, IRJET, 2018.

[6] A. M. Fawzi Albalooshi, "A Comparative Study on the

Effect of Multiple Inheritance Mechanism in Java, C++,

and Python on Complexity and Reusability of Code,"

International Journal of Advanced Computer Science

and Applications, 2017, vol. 8, no. 6, pp. 109-116.

[7] A. G. Sujeet Kumar, A Brief Study On Inheritance, 2014,

10.13140/2.1.1659.8729.

[8] W. L. H. William R. Cook, "Inheritance Is Not

Subtyping.," Theoretical aspects of object-oriented

programming Journal, 1990.

Charanpreetkaur / Journal of Advanced Engineering Research, 2022, 9 (1), 01-05

Research Article 5 www.jaeronline.com

[9] Shivam, "A Study on Inheritance Using Object Oriented

Programming with C++," International Journal of

Advance Research in Computer Science and

Management Studies, 2013, vol. 1(2), pp 10-21.

[10] E. Balagurusamy, Object Oriented programming with

C++ 6th edition, Tata McGraw-Hill 2013

[11] Kaur L, Kaur. N., Ummat, a., Kaur, J., & Kaur, N.

Research paper on object oriented software engineering.,

International Journal Of Computer Science And

Technology, 2016, 36-38.

[12] Kak, Avinash C. Programming with Objects, A

Comparative, Presentation of Object-Oriented

Programming with C++ and Java, John Wiley, 2003.

ISBN 0-471-26852-6.

[13] Svenk, Goran, Object-Oriented Programming: Using

C++ for Engineering and Technology Delmar, 2003.

ISBN 0-7668-3894-3.

[14] Seed, Graham M., An Introduction to Object-Oriented

Programming in C++ with Applications in Computer

Graphics, Second Ed., Springer-Verlag, 2001.ISBN 1-

85233-450-9.

[15] H. Schildt, “Java The Complete Reference” 11th edition,

The future, 2020.

[16] E balaguruswamy, Programming with java A primer 3e,

Tata Mcgraw Hill Education Private Limited, 2013

