SD-Divisibility and Some Results on SD-Divisor Labeling of Graphs

K. Kasthuri^{1,*}, K. Karuppasamy¹, K. Nagarajan¹

¹ Department of Mathematics, KARE, Krishnankoil - 626 126, Tamil Nadu, India.

*Corresponding author email: <u>kasthurimahalakshmi@gmail.com</u>, Tel.: +91 8220641802

ABSTRACT

Let G with bijection f :V \rightarrow {1, 2,..., n}, linked to S = f(x) + f(y) and D = |f(x) - f(y)| with each edge xy in E. The labeling f makes on edge labeling f* : E \rightarrow {0, 1} like for any xy in E, f*(xy) = 1 if D | S and f*(xy) = 0 if D | S. We mean f is an SD-divisor labeling if f*(xy) = 1 for all xy in E. Further, G is SD-divisor if it have SD-divisor labeling. We mean f is an SD-divisor cordial labeling if | $e_{f*}(0) - e_{f*}(1)| \le 1$. Further, G is SD-divisor cordial if it have SD-divisor cordial labeling. In this article, we define SD-divisibility and SD-divisor pair of numbers and establish some of its properties. We also proved some standard graphs are not SD-divisor.

Keywords - Divisor cordial labeling, SD-divisor labeling, SD-divisor graph

1. INTRODUCTION

In this article, graphs and number theory terms we mention to [4] and [2] respectively. Also divisor cordial labeling and SD-prime labeling concepts we refer to [10] and [6] respectively. Here we define SD-divisibility and SD-divisor pair of numbers and establish some of its properties. Also we proved some standard graphs like star, complete, complete bipartite and wheel graphs are not SD-divisor.

2. SD-DIVISIBILITY AND ITS PROPERTIES

First we define SD-divisibility of two positive integers.

Definition 2.1 Let a and b be the two distinct positive integers, we say that a SD-divides b if |a - b| | (a + b). It is indicated by a $|_{SD}$ b. If a does not SD-divide b, then it is indicated by a $|_{SD}$ b.

Example 2.2 3 |_{SD} 5.

Example 2.3 2 |_{SD} 10.

Note:

- 1. From the examples 2.2 and 2.3, divisibility and SD-divisibility are different concepts.
- 2. By the definition 2.1, SD-divisibility is not reflexive.
- From the definition 2.1, a |_{SD} b gives |a b| | (a + b). Its gives |b a| | (b + a). Clearly, b |_{SD} a. Thus, SD-divisibility is symmetric.
- 4. SD-divisibility is not transitive.
- 5. SD-divisibility is not an equivalence relation.

Example 2.4 1 $|_{SD}$ 3 and 3 $|_{SD}$ 5 but 1 $|_{SD}$ 5.

Observation 2.5 It is known that if k and k+2 are two consecutive odd integers, then $k \nmid k + 2$ for $k \ge 3$. If k and k + 2 are two consecutive even integers, then $k \nmid k + 2$ for $k \ge 4$.

Result 2.6 1 SD-divides only to the integers 2 and 3. Proof: If a = 1 and b > 1 are any positive integer. If $1 \mid_{SD} b$, then $(b-1) \mid (b+1)$. This means that two consecutive odd integers or two consecutive even integers divide. This is possible only if b = 2 and 3.

Result 2.7 2 SD-divides only to the integers 1, 3, 4 and 6.

 $\begin{array}{ll} Proof: \ If \ a=2 \ and \ b \ are \ any \ positive \ integer. \\ If \ 2 \ |_{SD} \ b, \ then \ |b-2| \ | \ (b+2). \\ This \ is \ possible \ only \ if \ \ b=1, \ 3, \ 4 \ and \ 6. \end{array}$

Result 2.8 3 SD-divides only to the integers 1, 2, 4, 5, 6 and 9. Proof: If a = 3 and b are any positive integer. If $3 \mid_{SD} b$, then |b - 3| | (b + 3). This is possible only if b = 1, 2, 4, 5, 6 and 9.

Observation 2.9 Let $a \ge 3$ be the any positive integer. Then a - 1, a - 2, a + 1, a + 2, 2a and 3a are SD-divisible by a.

 $\begin{array}{ll} \mbox{Result 2.10} & \mbox{If a and b are the two consecutive odd} \\ \mbox{integers, then } a \mid_{SD} b. \\ \mbox{Proof: Let } a = 2k+1, \ b = 2k+3 \ for \ k \geq 0. \\ \mbox{Then } |a-b| = 2 \ and \ a+b = 4(k+1). \\ \mbox{Clearly 2} \mid 4(k+1). \ \mbox{Then } a \mid_{SD} b. \end{array}$

Result 2.11 If a and b are the two consecutive even integers, then a $|_{SD}$ b. Proof: Let a = 2k + 2, b = 2k + 4 for $k \ge 0$. Then |a - b| = 2 and a + b = 2(2k + 3). Clearly 2 | 2(2k + 3). Then a $|_{SD}$ b.

3. SD-DIVISOR PAIR

In this section, we define SD-divisor pair of integers and establish some results.

Definition 3.1 If a and b are the two distinct positive integers. If a $|_{SD}$ b, then we say that (a, b) is called SD-divisor pair.

Example 3.2 For $k \ge 1$, (k, k + 1) is SD-divisor pair.

Note: If $1 \ge 1$ is any positive integer, then (lk, l(k + 1)) is SD-divisor pair.

Result 3.3 If (a, b) is SD-divisor pair, then (ka, kb) is SD-divisor pair for $k \ge 1$.

Proof: Let a and b be the SD-divisor pair. Without loss of generality, we take b < a.

Then a $|_{SD}$ b gives (a - b) | (a + b)

 $=> k(a - b) | k(a + b) \text{ for } k \ge 1$ => (ka - kb) | (ka + kb). $=> ka |_{SD} kb.$

Result 3.4 Let $k \ge 2$. Then (k + 1, k - 1) is SD-divisor pair. Proof: If a = k + 1 and b = k - 1 for $k \ge 2$. Next |a - b| = 2, a + b = 2k.

Clearly 2 | 2k.

Thus, (k + 1, k - 1) is SD-divisor pair for $k \ge 2$.

Result 3.5 Let $k \ge 0$. Then $(2^k, 2^{k+1})$ is SD-divisor pair. Proof: Let $a = 2^k$, $b = 2^{k+1}$ for $k \ge 0$. Next $|a - b| = 2^k$ and $a + b = 3 \cdot 2^k$. Clearly |a - b| | (a + b). Thus, $(2^k, 2^{k+1})$ is SD-divisor pair for $k \ge 0$.

Result 3.6 Let $k \ge 0$. Then $(3^k, 3^{k+1})$ is SD-divisor pair. Proof: Let $a = 3^k$ and $b = 3^{k+1}$ for $k \ge 0$. Then $|a - b| = |3^k - 3^{k+1}| = 2 \cdot 3^k$ and $a + b = 3^k + 3^{k+1} = 4 \cdot 3^k$. Clearly |a - b| | (a + b). Thus, $(3^k, 3^{k+1})$ is SD-divisor pair for $k \ge 0$.

Result 3.7 Let $l \ge 4$ and $k \ge 0$. Then (l^k, l^{k+1}) is not SD-divisor pair. Proof: Let $a = l^k$ and $b = l^{k+1}$ for $l \ge 4$, $k \ge 0$. Then $|a - b| = |l^k - l^{k+1}| = l^k(l - 1)$ and $a + b = l^k + l^{k+1} = l^k(l + 1)$. Clearly $l - 1 \ddagger l + 1$ for $l \ge 4$. Thus, (l^k, l^{k+1}) is not SD-divisor pair for $l \ge 4$, $k \ge 0$.

Definition 3.8 Let S be a set of any distinct positive integers. Then S is said to be SD-divisor set if every pair of integers in S is SD-divisor.

Notations 3.9 $[n] = \{1, 2, ..., n\}$

Example 3.10 [2] and [3] are SD-divisor sets.

4. GRAPHS WHICH ARE NOT SD-DIVISOR

In this section, we prove some standard graphs are not SD-divisor.

Definition 4.1 [5] A bijection $f : V \rightarrow \{1, 2, ..., n\}$ makes an edge labeling $f^* : E \rightarrow \{0, 1\}$ like for any edge xy in E, $f^*(xy) = 1$ if $f(x)|_{SD} f(y)$ and $f^*(xy) = 0$ if $f(x)|_{SD} f(y)$. We mean f is an SD-divisor labeling if $f^*(xy) = 1$ for all xy in E. Further, G admits SD-divisor labeling is called SD-divisor graph.

Next, we will investigate whether the star graph $K_{1,n}$ is SD-divisor or not.

Clearly $K_{1,1}$ and $K_{1,2}$ are SD-divisor.

Fig. 1 shows K_{1,3}, K_{1,4} and K_{1,5} are SD-divisor.

Figure 1. Star Graphs

Theorem 4.3 For $n \ge 6$, the star graph $K_{1,n}$ is not SD-divisor.

Proof: Consider the set $\{1, 2, ..., n+1\}, n \ge 6$.

Let v be the central vertex of $K_{1,n}$ ($n \ge 6$).

If we label 1 to v and other numbers to the end vertices of $K_{1,n}$, then it follows from the result 2.6, 1 does not SD-divide 4, 5, 6, 7, 8, ..., n + 1.

If we label 2 to v and other numbers to the end vertices of $K_{1,n}$, then it follows from the result 2.7, 2 does not SD-divide 5, 7, 8, 9, 10, ..., n + 1.

If we label 3 to v and other numbers to the end vertices of $K_{1,n}$, then it follows from the result 2.8, 3 does not SD-divide 7, 8, 10, 11, 12, ..., n + 1.

Suppose, we label $n \ge 4$ to v.

Since any one of the end vertex has the label 1, then it follows from the result 2.6, 1 does not SD-divide to the label of v.

Thus, $K_{1,n}$ is not SD-divisor for $n \ge 6$.

Theorem 4.4 If $\delta(G) \ge 3$, then G is not SD-divisor.

Proof: Suppose G is SD-divisor.

Let v be the vertex of degree $\delta(G) \ge 3$, which is labeled with 1.

Then, any one of the δ adjacent vertices of v must have the labels other than 2 and 3, say w.

From the result 2.6, it follows that 1 does not SD-divide the label of w.

This is contradiction to G is SD-divisor.

Next, we discuss the SD-divisibility of complete graphs. Clearly, the complete graphs K_1 , K_2 and K_3 are SD-divisor. Now, we will prove K_n is not SD-divisor for $n \ge 4$.

Corollary 4.5 For $n \ge 4$, the complete graph K_n is not SD-divisor.

Proof: Since $\delta(K_n) \ge 3$ for $n \ge 4$, the result follows from theorem 4.4.

Next, we discuss the SD-divisibility of complete bipartite graphs. Clearly, $K_{1,1}$, $K_{1,2}$ and $K_{2,2}$ are SD-divisor.

Figure 2. shows the labeling patterns $K_{2,3}$ is not SDdivisor. *Complete Bipartite Graph* $K_{2,3}$

Similarly, K_{3,2} is not SD-divisor.

Corollary 4.6 For m, $n \ge 3$, the complete bipartite graph $K_{m,n}$ is not SD-divisor.

Proof: Since $\delta(K_{m,n}) \ge 3$ for $m, n \ge 3$, the result follows from theorem 4.4.

Corollary 4.7 The wheel graph $W_{n+1}(n \ge 3)$ is not SD-divisor.

Corollary 4.8 Petersen graph is not SD-divisor.

Corollary 4.9 Let G_1 and G_2 be SD-divisor graphs with $m \ge 2$ and $n \ge 2$ vertices respectively, then $G_1 + G_2$ is not SD-divisor.

Proof: Since $m \ge 2$ and $n \ge 2$, $\delta(G_1 + G_2) \ge 3$. Then the result follows from theorem 4.4.

5. CONCLUSION

In this article, we have introduced SD-divisibility and SD-divisor pair of numbers and establish some of its properties. We also proved some standard graphs are not SD-divisor. We have to find SD-divisor labeling of various type graphs. Also trying to find some applications using SD-divisor labeling in network problems.

REFERENCE

- [1] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
- [2] David M. Burton, Elementary Number Theory, Second Edition, *Wm. C. Brown Company Publishers*, 1980.
- [3] R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan, Divisor cordial graphs, *International Journal of Mathematical Combinatorics*, (4), 2011, 15-25.
- [4] G.C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo and H. K. Ng, On SD-Prime Cordial Graphs, *International Journal of Pure and Applied Mathematics*, 106 (4), 2016, 1017-1028.
- [5] K. Kasthuri, K. Karuppasamy and K. Nagarajan, SD-Divisor Labeling of Path and Cycle Related Graphs, AIP Conference Proceedings 2463, 2022, 030001.