SD-Divisibility and Some Results on SD-Divisor Labeling of Graphs

K. Kasthuri ${ }^{1, *}$, K. Karuppasamy ${ }^{1}$, K. Nagarajan ${ }^{1}$
${ }^{1}$ Department of Mathematics, KARE, Krishnankoil-626 126, Tamil Nadu, India.
*Corresponding author email: kasthurimahalakshmi@gmail.com, Tel.: +918220641802

Abstract

Let G with bijection $f: V \rightarrow\{1,2, \ldots, n\}$, linked to $S=f(x)+f(y)$ and $D=|f(x)-f(y)|$ with each edge $x y$ in E. The labeling f makes on edge labeling $f^{*}: E \rightarrow\{0,1\}$ like for any $x y$ in $E, f^{*}(x y)=1$ if $D \mid S$ and $f^{*}(x y)=0$ if $D \nmid S$. We mean f is an SD-divisor labeling if $f *(x y)=1$ for all $x y$ in E. Further, G is SD-divisor if it have SD-divisor labeling. We mean f is an SD-divisor cordial labeling if $\left|\mathrm{e}_{\mathrm{f}^{*}}(0)-\mathrm{e}_{\mathrm{f}^{*}}(1)\right| \leq 1$. Further, G is SD-divisor cordial if it have SD-divisor cordial labeling. In this article, we define SD-divisibility and SD-divisor pair of numbers and establish some of its properties. We also proved some standard graphs are not SD-divisor.

Keywords - Divisor cordial labeling, SD-divisor labeling, SD-divisor graph

1. INTRODUCTION

In this article, graphs and number theory terms we mention to [4] and [2] respectively. Also divisor cordial labeling and SD-prime labeling concepts we refer to [10] and [6] respectively. Here we define SD-divisibility and SD-divisor pair of numbers and establish some of its properties. Also we proved some standard graphs like star, complete, complete bipartite and wheel graphs are not SD-divisor.

2. SD-DIVISIBILITY AND ITS PROPERTIES

First we define SD-divisibility of two positive integers.
Definition 2.1 Let a and b be the two distinct positive integers, we say that a SD-divides b if $|a-b| \mid(a+b)$. It is indicated by a $\left.\right|_{\text {SD }} b$. If a does not SD-divide b, then it is indicated by a $\dagger_{\text {SD }} \mathrm{b}$.

Example $\left.2.23\right|_{\text {SD }} 5$.
Example $2.32 \mathrm{f}_{\mathrm{sD}} 10$.

Note:

1. From the examples 2.2 and 2.3, divisibility and SD-divisibility are different concepts.
2. By the definition 2.1, SD-divisibility is not reflexive.
3. From the definition 2.1, a $\left.\right|_{\mathrm{SD}} \mathrm{b}$ gives $|a-b| \mid(a+b)$. Its gives $|b-a| \mid(b+a)$. Clearly, $\left.\mathrm{b}\right|_{\text {SD }} \mathrm{a}$.
Thus, SD-divisibility is symmetric.
4. SD-divisibility is not transitive.
5. SD-divisibility is not an equivalence relation.

Example $\left.2.41\right|_{\text {SD }} 3$ and $\left.3\right|_{\text {SD }} 5$ but $\left.1\right|_{\text {SD }} 5$.

Observation 2.5 It is known that if k and $\mathrm{k}+2$ are two consecutive odd integers, then $\mathrm{k} \nmid \mathrm{k}+2$ for $\mathrm{k} \geq 3$. If k and $k+2$ are two consecutive even integers, then $k \nmid k+2$ for $k \geq 4$.

Result 2.6 1 SD-divides only to the integers 2 and 3.
Proof: If $a=1$ and $b>1$ are any positive integer.
If $\left.1\right|_{\text {SD }} b$, then $(b-1) \mid(b+1)$.
This means that two consecutive odd integers or two consecutive even integers divide.
This is possible only if $\mathrm{b}=2$ and 3 .
Result 2.7 2 SD-divides only to the integers 1, 3, 4 and 6.

Proof: If $\mathrm{a}=2$ and b are any positive integer.
If $\left.2\right|_{\mathrm{sd}} \mathrm{b}$, then $|\mathrm{b}-2| \mid(\mathrm{b}+2)$.
This is possible only if $\mathrm{b}=1,3,4$ and 6 .
Result 2.8 3 SD-divides only to the integers 1, 2, 4, 5, 6 and 9.
Proof: If $a=3$ and b are any positive integer.
If $\left.3\right|_{\text {sd }} b$, then $|b-3| \mid(b+3)$.
This is possible only if $\mathrm{b}=1,2,4,5,6$ and 9 .
Observation 2.9 Let $\mathrm{a} \geq 3$ be the any positive integer. Then $a-1, a-2, a+1, a+2,2 a$ and $3 a$ are SD-divisible by a.

Result 2.10 If a and b are the two consecutive odd integers, then $\left.\mathrm{a}\right|_{\mathrm{SD}} \mathrm{b}$.
Proof: Let $\mathrm{a}=2 \mathrm{k}+1, \mathrm{~b}=2 \mathrm{k}+3$ for $\mathrm{k} \geq 0$.
Then $|a-b|=2$ and $a+b=4(k+1)$.
Clearly $2 \mid 4(k+1)$. Then a $\left.\right|_{\text {sD }} \mathrm{b}$.
Result 2.11 If a and b are the two consecutive even integers, then $\left.\mathrm{a}\right|_{\mathrm{SD}} \mathrm{b}$.
Proof: Let $\mathrm{a}=2 \mathrm{k}+2, \mathrm{~b}=2 \mathrm{k}+4$ for $\mathrm{k} \geq 0$.
Then $|a-b|=2$ and $a+b=2(2 k+3)$.
Clearly $2 \mid 2(2 \mathrm{k}+3)$. Then a $\left.\right|_{\text {sd }} \mathrm{b}$.

3. SD-DIVISOR PAIR

In this section, we define SD-divisor pair of integers and establish some results.

Definition 3.1 If a and b are the two distinct positive integers. If a $\left.\right|_{S D} b$, then we say that (a, b) is called SD-divisor pair.

Example 3.2 For $\mathrm{k} \geq 1,(\mathrm{k}, \mathrm{k}+1)$ is SD-divisor pair.
Note: If $1 \geq 1$ is any positive integer, then ($1 \mathrm{k}, 1(\mathrm{k}+1)$) is SD-divisor pair.

Result 3.3 If (a, b) is SD-divisor pair, then (ka, kb) is SD-divisor pair for $\mathrm{k} \geq 1$.
Proof: Let a and b be the SD-divisor pair. Without loss of generality, we take $\mathrm{b}<\mathrm{a}$.
Then $\left.a\right|_{\text {SD }} b$ gives $(a-b) \mid(a+b)$

$$
\begin{aligned}
& \Rightarrow k(a-b) \mid k(a+b) \text { for } k \geq 1 \\
& \Rightarrow(k a-k b) \mid(k a+k b) . \\
& \left.\Rightarrow k a\right|_{\text {SD }} k b .
\end{aligned}
$$

Result 3.4 Let $\mathrm{k} \geq 2$. Then $(\mathrm{k}+1, \mathrm{k}-1)$ is SD-divisor pair.
Proof: If $\mathrm{a}=\mathrm{k}+1$ and $\mathrm{b}=\mathrm{k}-1$ for $\mathrm{k} \geq 2$.
Next $|a-b|=2, a+b=2 k$.
Clearly $2 \mid 2 \mathrm{k}$.
Thus, $(\mathrm{k}+1, \mathrm{k}-1)$ is SD-divisor pair for $\mathrm{k} \geq 2$.
Result 3.5 Let $\mathrm{k} \geq 0$. Then $\left(2^{\mathrm{k}}, 2^{\mathrm{k}+1}\right)$ is SD-divisor pair.
Proof: Let $\mathrm{a}=2^{\mathrm{k}}, \mathrm{b}=2^{\mathrm{k}+1}$ for $\mathrm{k} \geq 0$.
Next $|\mathrm{a}-\mathrm{b}|=2^{\mathrm{k}}$ and $\mathrm{a}+\mathrm{b}=3 \cdot 2^{\mathrm{k}}$.
Clearly $|a-b| \mid(a+b)$.
Thus, $\left(2^{\mathrm{k}}, 2^{\mathrm{k}+1}\right)$ is SD-divisor pair for $\mathrm{k} \geq 0$.
Result 3.6 Let $\mathrm{k} \geq 0$. Then $\left(3^{\mathrm{k}}, 3^{\mathrm{k}+1}\right)$ is SD-divisor pair.
Proof: Let $\mathrm{a}=3^{\mathrm{k}}$ and $\mathrm{b}=3^{\mathrm{k}+1}$ for $\mathrm{k} \geq 0$.
Then $|a-b|=\left|3^{k}-3^{k+1}\right|=2 \cdot 3^{k}$
and $a+b=3^{k}+3^{k+1}=4 \cdot 3^{k}$.
Clearly $|a-b| \mid(a+b)$.
Thus, $\left(3^{\mathrm{k}}, 3^{\mathrm{k}+1}\right)$ is SD-divisor pair for $\mathrm{k} \geq 0$.
Result 3.7 Let $\mathrm{l} \geq 4$ and $\mathrm{k} \geq 0$. Then ($\mathrm{l}^{\mathrm{k}}, \mathrm{l}^{\mathrm{k}+1}$) is not SD-divisor pair.
Proof: Let $\mathrm{a}=\mathrm{l}^{\mathrm{k}}$ and $\mathrm{b}=\mathrm{l}^{\mathrm{k}+1}$ for $\mathrm{l} \geq 4, \mathrm{k} \geq 0$.
Then $|a-b|=\left|l^{k}-l^{k+1}\right|=l^{k}(1-1)$
and $\mathrm{a}+\mathrm{b}=\mathrm{l}^{\mathrm{k}}+\mathrm{l}^{\mathrm{k}+1}=\mathrm{l}^{\mathrm{k}}(\mathrm{l}+1)$.
Clearly $1-1 \nmid 1+1$ for $1 \geq 4$.
Thus, $\left(l^{k}, l^{k+1}\right)$ is not SD-divisor pair for $1 \geq 4, k \geq 0$.
Definition 3.8 Let S be a set of any distinct positive integers. Then S is said to be SD-divisor set if every pair of integers in S is SD-divisor.

Notations $3.9[n]=\{1,2, \ldots, n\}$
Example 3.10 [2] and [3] are SD-divisor sets.

4. GRAPHS WHICH ARE NOT SD-DIVISOR

In this section, we prove some standard graphs are not SD-divisor.

Definition 4.1 [5] A bijection $\mathrm{f}: \mathrm{V} \rightarrow\{1,2, \ldots, \mathrm{n}\}$ makes an edge labeling $\mathrm{f}^{*}: \mathrm{E} \rightarrow\{0,1\}$ like for any edge $x y$ in $E, f *(x y)=1$ if $\left.f(x)\right|_{S D} f(y)$ and $f^{*}(x y)=0$ if $\left.f(x)\right|_{S D} f(y)$. We mean f is an SD-divisor labeling if $f^{*}(x y)=1$ for all $x y$ in E. Further, G admits SD-divisor labeling is called SD-divisor graph.

Next, we will investigate whether the star graph $\mathrm{K}_{1, \mathrm{n}}$ is SD-divisor or not.

Clearly $\mathrm{K}_{1,1}$ and $\mathrm{K}_{1,2}$ are SD-divisor.
Fig. 1 shows $K_{1,3}, K_{1,4}$ and $K_{1,5}$ are SD-divisor.

Figure 1. Star Graphs
Theorem 4.3 For $n \geq 6$, the star graph $K_{1, \mathrm{n}}$ is not SD-divisor.
Proof: Consider the set $\{1,2, \ldots, n+1\}, n \geq 6$.
Let v be the central vertex of $K_{1, n}(n \geq 6)$.
If we label 1 to v and other numbers to the end vertices of $\mathrm{K}_{1, \mathrm{n}}$, then it follows from the result 2.6, 1 does not SD-divide 4, 5, 6, 7, 8, $\ldots, n+1$.
If we label 2 to v and other numbers to the end vertices of $\mathrm{K}_{1, \mathrm{n}}$, then it follows from the result 2.7, 2 does not SD-divide 5, 7, 8, 9, 10, $\ldots, \mathrm{n}+1$.
If we label 3 to v and other numbers to the end vertices of $\mathrm{K}_{1, \mathrm{n}}$, then it follows from the result 2.8, 3 does not SD-divide $7,8,10,11,12, \ldots, n+1$.
Suppose, we label $n \geq 4$ to v.
Since any one of the end vertex has the label 1 , then it follows from the result $2.6,1$ does not SD -divide to the label of v .
Thus, $\mathrm{K}_{1, \mathrm{n}}$ is not SD-divisor for $\mathrm{n} \geq 6$.
Theorem 4.4 If $\delta(\mathrm{G}) \geq 3$, then G is not SD-divisor.
Proof: Suppose G is SD-divisor.
Let v be the vertex of degree $\delta(\mathrm{G}) \geq 3$, which is labeled with 1 .
Then, any one of the δ adjacent vertices of v must have the labels other than 2 and 3 , say w.

From the result 2.6, it follows that 1 does not SD-divide the label of w.
This is contradiction to G is SD-divisor.
Next, we discuss the SD-divisibility of complete graphs. Clearly, the complete graphs $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} are SD-divisor. Now, we will prove K_{n} is not SD-divisor for $n \geq 4$.

Corollary 4.5 For $n \geq 4$, the complete graph K_{n} is not SD-divisor.
Proof: Since $\delta\left(K_{n}\right) \geq 3$ for $n \geq 4$, the result follows from theorem 4.4.

Next, we discuss the SD-divisibility of complete bipartite graphs. Clearly, $\mathrm{K}_{1,1}, \mathrm{~K}_{1,2}$ and $\mathrm{K}_{2,2}$ are SD-divisor.

Figure 2. shows the labeling patterns $\mathrm{K}_{2,3}$ is not SDdivisor. Complete Bipartite Graph $K_{2,3}$

Similarly, $\mathrm{K}_{3,2}$ is not SD-divisor.
Corollary 4.6 For $\mathrm{m}, \mathrm{n} \geq 3$, the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is not SD-divisor.
Proof: Since $\delta\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right) \geq 3$ for $\mathrm{m}, \mathrm{n} \geq 3$, the result follows from theorem 4.4.

Corollary 4.7 The wheel graph $\mathrm{W}_{\mathrm{n}+1}(\mathrm{n} \geq 3)$ is not SD-divisor.

Corollary 4.8 Petersen graph is not SD-divisor.
Corollary 4.9 Let G_{1} and G_{2} be SD-divisor graphs with $\mathrm{m} \geq 2$ and $\mathrm{n} \geq 2$ vertices respectively, then $\mathrm{G}_{1}+\mathrm{G}_{2}$ is not SD-divisor.
Proof: Since $m \geq 2$ and $n \geq 2, \delta\left(G_{1}+G_{2}\right) \geq 3$. Then the result follows from theorem 4.4.

5. CONCLUSION

In this article, we have introduced SD-divisibility and SD-divisor pair of numbers and establish some of its properties. We also proved some standard graphs are not SD-divisor. We have to find SD-divisor labeling of various type graphs. Also trying to find some applications using SD-divisor labeling in network problems.

REFERENCE

[1] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
[2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
[3] R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan, Divisor cordial graphs, International Journal of Mathematical Combinatorics, (4), 2011, 15-25.
[4] G.C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo and H. K. Ng, On SD-Prime Cordial Graphs, International Journal of Pure and Applied Mathematics, 106 (4), 2016, 1017-1028.
[5] K. Kasthuri, K. Karuppasamy and K. Nagarajan, SD-Divisor Labeling of Path and Cycle Related Graphs, AIP Conference Proceedings 2463, 2022, 030001.

