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ABSTRACT 

In this work, optimization of machining parameters cutting speed, feed rate and depth of cut is performed during turning 

AISI 4340 steel with uncoated carbide cutting inserts. An L9(33) Orthogonal Array is chosen based on Taguchi’s Design 

of Experiments and the output responses flank wear, surface roughness and Material Removal Rate (MRR) were 

measured. Empirical models representing the output responses are developed using linear regression models. A meta-

heuristic evolutionary algorithm, Non-dominated Sorting Genetic Algorithm (NSGA-II) is applied to determine the 

optimum set of machining parameters for minimizing flank wear and maximizing MRR considering the surface 

roughness values within a specific limit (constraint). Pareto optimal front comprising of a set of solutions is obtained 

between the objective functions. From the results obtained, it is observed that NSGA-II can be used for predicting the 

machining parameters and output responses with at most precision showing the supremacy of the algorithm. 
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1. INTRODUCTION  

Turning is the most widely used metal removal process 

in industries. Turning in the general sense refers to the 

generation of any cylindrical surface with a single point 

cutting tool, in which the direction of the feeding 

motion is predominantly axial with respect to the 

machine spindle. Fig. 1 shows the schematic illustration 

of the basic turning operation, showing depth-of-cut, d; 

feed rate, f; and spindle rotational speed, N in rev/min.  

Cutting speed is the surface speed of the workpiece at 

the tool tip [1]. 

 

Fig.1 Schematic representation of turning process 

Cutting tool life is one of the most important economic 

considerations in metal cutting. In roughing operations, 

the tool material, the various tool angles, cutting speeds 

and feed rates are usually chosen to give an economical 

tool life. On the other hand, the use of very low speeds 

and feeds to give long tool life will not be economical 

because of the low production rate. The depth of cut 

should be as great as is consistent with the strength and 

size of any cutting tool or carbide inserts when used, 

and the amount of stock to be removed. The feed 

depends on the finish desired and the strength and 

rigidity of the part and the machine. Cutting speed 

depends primarily on workpiece hardness and tool 

material [2].  

Nalbant et al. [3] applied Taguchi’s technique to 

determine the optimal cutting parameters in minimizing 

surface roughness during turning AISI 1030 bars using 

TiN coated tools and found that greater nose radius and 

lower feed rate and depth of cut produces better surface 

roughness. Experiments based on Taguchi’s 

experimental design to optimize cutting conditions to 

obtain lowest surface roughness in turning SCM 440 

alloy was conducted by Thamizhmanii et al. [4] and 

found that depth of cut is the most contributing factor 

for surface roughness, followed by feed rate. Effect of 

cryogenic cooling on tool wear and high frequency 

dynamic cutting forces during high speed machining of 

stainless steel, in both dry and cryogenic conditions was 

studied by Kumar and Choudhury [5] and found that 

cryogenic cooling was effective in reducing the cutting 

temperatures and thereby reducing flank wear by 

37.39%. 
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Researches have studied the effects of machining 

parameters, PCBN tool grade and workpiece hardness 

to achieve better tool life, tool wear, surface roughness 

and MRR in hard turning of crank pin material [6]. 

Combined effects of cutting speed, feed rate and depth 

of cut on flank wear and surface roughness during 

turning AISI 4140 steel using Al2O3 + TiCN mixed 

ceramic tool is performed [7]and concluded that cutting 

speed  is the significant parameters for flank wear and 

interaction effect of cutting speed and feed rate for 

surface roughness. Investigation on the effects of 

cutting parameters in turning hardened AISI H11 on 

flank wear (VB) and surface roughness (Ra) using CBN 

tool is carried out [8] and found that cutting time and 

cutting speed is responsible for flank wear and feed rate 

for higher surface roughness. 

Senthilkumar et al. [9] predicted the effects of variation 

in machining parameters, geometrical parameters and 

workpiece hardness through Artificial Neural Network 

approach during turning with uncoated cemented 

carbide inserts. Taguchi’s technique is applied to 

optimize cutting parameters in turning Ti-6%Al-4%V 

with coated and uncoated cemented carbide tools under 

dry cutting condition and high cutting speed and found 

that cutting speed and tool grade have a significant 

effect on surface roughness, contributing by 47.146% 

and 38.881% [10]. Multi-objective optimization 

problem in turning are solved by using multi-objective 

differential evolution (MODE) algorithm and non-

dominated sorting genetic algorithm (NSGA-II) for 

minimum tool wear, maximum metal removal rate with 

constraints of temperature and surface roughness during 

turning EN24 steel with tungsten carbide and observed 

that MODE algorithm outperforms NSGA-II [11].  

Srinivas and Deb [12] investigated Goldberg’s notion of 

non-dominated sorting in GAs along with niche and 

speciation method to find multiple Pareto-optimal 

points simultaneously and suggested that the proposed 

method can be extended to higher dimensional and 

more difficult multi-objective problems. Optimization 

of machining and geometrical parameters during 

turning different hardened workpieces over flank wear 

and cutting zone temperature is performed by applying 

Taguchi’s technique [13]. Apart from analyzing and 

optimizing the machining parameters, researchers had 

also analyzed the effects of variation in cutting tool 

geometries during turning process both experimentally 

and by numerical simulation [14,15] and found that 

better results can be achieved by altering the tool 

geometry [16-18]. Nowadays newly developed 

evolutionary algorithms such as firefly algorithm, 

cuckoo search algorithm, flower pollination algorithm, 

frog leaping algorithm, teaching-learning algorithm etc., 

were also applied for engineering problems to obtain 

the desired results [19,20] apart from analyzing the 

responses obtained using various data analysis 

techniques. 

2. PROBLEM IDENTIFICATION  

Selection of machining conditions to machine a 

particular work piece for a particular operation, which 

may be rough turning or finish turning is a tedious task, 

owing to various considerations in metal cutting. Tool 

life, economic machining and quality of components 

produced are of major considerations during turning. 

The machining conditions chosen should be an 

optimum condition, which should improve tool life by 

reducing flank wear, surface roughness, to improve the 

economic machining by increasing the MRR and to 

improve the quality of component. Improper selection 

of machining conditions will give rise to higher cutting 

forces and higher temperature at the tool-work piece 

interface favouring surface roughness and flank wear. 

Hence, the machining parameters such as cutting speed, 

feed rate and depth of cut has to be optimized to obtain 

better results. Hence, the final problem is to get 

optimized input machining parameters to have a control 

over the output responses by considering the problem 

into a Multi-objective problem [21-26].  

In this analysis, machining parameters such as cutting 

speed, feed rate and depth of cut are optimized using a 

non-traditional optimization algorithm NSGA-II [27-

34]. The purpose is to minimize flank wear and 

maximize MRR within a specific limit of surface 

roughness during turning AISI 4340 steel using 

uncoated carbide cutting tool inserts.  

3. WORKPIECE & CUTTING TOOL 

MATERIAL 

The workpiece material chosen for this analysis is AISI 

4340 Nickel-chromium-molybdenum  alloy steel; a high 

tensile strength, shock resistance, good ductility and 

resistance to wear steel, used in construction of aircrafts 

and heavy vehicle crankshaft, gear shaft, camshaft and 

propeller shaft etc. The chemical composition of the 

workpiece material is shown in Table 1, whose 

hardness is 217 BHN. The cutting tool insert used in 

this study is uncoated cemented carbide insert of 

WIDIA brand, whose ISO designation is CNMG 

120404 and Brinell hardness value of 1433 BHN. 
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Table 1 Chemical composition of AISI 4340 steel 

Sl. No Elements Present Alloying % 

1 Carbon 0.372 

2 Silicon 0.278 

3 Manganese 0.570 

4 Phosphorus 0.030 

5 Sulphur 0.026 

6 Chromium 1.106 

7 Molybdenum 0.320 

8 Nickel 1.467 

9 Aluminum 0.023 

10 Copper 0.140 

11 Niobium 0.064 

12 Vanadium 0.033 

13 Ferrous 95.571 

 

4. EXPERIMENTAL SETUP & 

METHODOLOGY 

The experiments are conducted on a CNC Turning 

center of diameter 350 mm, between centers 600 mm, 

spindle speed 4500 rpm, main motor power of 11kW. 

After performing the machining process, the flank wear 

is measured and recorded by using a Mitutoyo digital 

tool makers microscope of specifications, eyepiece 

15X, view field diameter 13mm, objective 2X, working 

distance 67mm, total magnification 30X. The surface 

roughness parameters values are measured using 

Surfcorder SE 3500 whose specification is measuring 

range of Z: 600 μm X: 100 mm, measuring 

magnification of Z: 50-500,000 X: 1-5,000, measuring 

speed of 0.05-2 mm/s, Z traverse range of 250 mm. 

Material removal rate is determined by noting the time 

of machining and weight of material removed.  

4.1 Taguchi’s Design of Experiment (DoE) 

Taguchi’s technique is a powerful tool in quality 

optimization [35]. Taguchi’s technique makes use of a 

special design of orthogonal array (OA) to examine the 

quality characteristics through a minimal number of 

experiments [36]. Taguchi’s DoE is used to design the 

orthogonal array for three parameters varied through 

three levels. The control parameters and their levels 

chosen [37] are shown in Table 2. 

Application of the Taguchi technique is accomplished 

in two phases: Design of the experiment, which 

includes determining controllable and noise factors and 

the level to be investigated, which determines the 

number of repetitions and; Analysis of the results to 

determine the best possible factor combination from 

individual factor influences and interactions [38]. 

The various combinations of cutting speed, feed rate 

and depth of cut based on which the experiments are to 

be conducted is presented in Table 3. 

 

Table 2 Control Parameters and its Levels 

Parameter / 

Level 
Symbol 

Level 

1 

Level 

2 

Level 

3 

Cutting 

Speed 

(m/min) 

A 136 122 108 

Feed Rate 

(mm/rev) 
B 0.203 0.330 0.432 

Depth of 

Cut (mm) 
C 0.1 0.2 0.3 

 

Table 3 Inner Array of Taguchi L9 Orthogonal Array 

Sl. No 
Cutting Speed 

(m/min) 

Feed Rate 

(mm/rev) 

Depth of 

Cut (mm) 

1 136 0.203 0.1 

2 136 0.330 0.2 

3 136 0.432 0.3 

4 122 0.203 0.2 

5 122 0.330 0.3 

6 122 0.432 0.1 

7 108 0.203 0.3 

8 108 0.330 0.1 

9 108 0.432 0.2 

 

4.2 Multiple Linear Regression Models 

Regression is conceptually simple technique for 

investigating functional relationship between output and 

input decision variables of a process and may be useful 

for manufacturing process data description, parameter 

estimation and control [39]. The criteria for fitting the 

best line through the data in simple linear regression is 

to minimize the sum of squares of residuals (Sr) 

between the measured values of response and the values 

of response calculated with the regression model.  The 

linear fit is expressed as: 

0 1
y a a x   (1) 

where ‘y’ is the value of response and ‘x’ is the value of 

variable. Multiple linear regressions are the useful 

extension of the linear regression when the response is a 
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linear function of two or more independent variables, 

which is the case in many practical applications. In 

general, the response variable y may be related to k 

regressor variables. The model in Equ. 2 is called a 

multiple linear regression model with k regressor 

variables. 

0 1 1 2 2
. . .

k k
y x x x           (2) 

The parameters βj, j = 0, 1, ., k, are called the regression 

coefficients. 

4.3 Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) 

Kalyanmoy Deb et al proposed NSGA-II [40,41]. It is 

the revised version of the Non-dominated Sorting 

Genetic Algorithm (NSGA-I). NSGA-II is 

computationally more efficient, which uses elitism and 

a crowded comparison operator. The elitist mechanism 

of NSGA-II consists of combining the best parents with 

the best offspring obtained. Firstly, NSGA-II uses an 

elite-preserving mechanism, thereby assuring 

preservation of previously found good solutions. 

Secondly, NSGA-II uses a fast non-dominated sorting 

procedure. Thirdly, NSGA-II does not require any 

tunable parameter, thereby making the algorithm 

independent of the user. Fig. 2 shows how the elites are 

preserved in NSGA-II. 

 

Fig. 2 Preservation of Elites in NSGA-II 

During preserving the elites, NSGA-II builds a 

population of competing individuals, ranks and sorts 

each individual according to non-domination level to 

create new pool of offspring and produces a new 

combined pool of population by combining the parents 

and offspring. By adding a crowding distance to each 

member of the newly generated population, the NSGA-

II then conducts niching. To keep a diverse front by 

making sure each member stays a crowding distance 

apart it uses this crowding distance in its selection 

operator to explore the fitness landscape. The pseudo 

code of the improved version of NSGA, NSGA-II is 

shown in Fig. 3 [42]. 

The values of the parameters that have been used in the 

NSGA-II technique are Variable type = Real variable, 

Population size=100, Crossover probability =0.9, Real-

parameter mutation probability =1, Real-parameter 

SBX parameter =10, Real-parameter Mutation 

parameter =100, Total number of generations=100. 

5. RESULTS AND DISCUSSION 

Based on the L9 Orthogonal array designed using 

Taguchi’s DoE experiments are conducted. In this 

study, 9 different workpieces are taken and for each 

level a separate workpiece is used and after performing 

the turning operation the output responses flank wear, 

surface roughness and MRR are determined and the 

values are given in Table 4. 

Table 4 Measured Output responses 

Sl. 

No 

Flank wear 

(mm) 

Surface 

roughness (µm) 

MRR 

(gm./min) 

1 0.126 2.46 0.017 

2 0.067 2.34 0.043 

3 0.144 3.71 0.06 

4 0.079 1.43 0.013 

5 0.086 2.44 0.041 

6 0.058 3.37 0.026 

7 0.112 2.18 0.023 

8 0.023 2.57 0.009 

9 0.045 3.45 0.047 

 

It is observed from the experimental results that, when 

the cutting speed is increased from 108 m/min to 122 

m/min, flank wear and MRR increases by 23.83% and 

1.52% whereas surface roughness is reduced by 

11.71%. When cutting speed is further increased from 

122 to 136 m/min the responses flank wear, surface 

roughness and MRR increases by 51.14%, 17.56% and 

49.81%. 

A decrease in flank wear by 44.51% and increase in 

surface roughness by 21.11% and MRR by 75.44% is 

noticed when feed rate is changed from 0.203 to 0.33 

mm/rev. With increase in feed rate from 0.33 to 0.432 

mm/rev, a considerable increase in flank wear by 

40.44%, surface roughness by 43.27% and MRR by 

42.95 is observed. 
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When the depth of cut is changed from 0.1 mm to 0.2 

mm, flank wear and surface roughness are reduced by 

7.68% and 14.05% with increase in MRR by 98.27%. 

When depth of cut is further changed from 0.2 to 0.3 

mm, flank wear drastically increases by 78.96% with 

surface roughness increasing by 15.37% and MRR 

increasing by 20.41%.  

Using Minitab-16, statistical software, empirical models 

are developed using multiple linear regression equations 

for the measured output responses flank wear, surface 

roughness and MRR which are given in Equ. (6-8). 

 

Fig. 3 Pseudo code for NSGA-II algorithm 

  -  0 .1 5 5   0 .0 0 1 8 7    

                         -  0 .1 1 3      0 .2 2 5     

F la n k W e a r C u tt in g s p e e d

F e e d r a te D e p th o f c u t

  

  
 (3) 

 
  0 .1 8 6   0 .0 0 3 7    

                                   6 .3 6 6     -  0 .1 1 7     

S u r fa c e R o u g h n e s s C u tt in g s p e e d

F e e d r a te D e p th o f c u t

  

  
 (4) 

 
 R e    -  0 .0 8 9 9   0 .0 0 0 4 8 8    

                                               0 .1 1 6      0 .1 2     

M a te r ia l m o v a l R a te C u tt in g s p e e d

F e e d r a te D e p th o f c u t

  

   
  (5) 

The objective of this work is to minimize the flank wear 

and maximize MRR with surface roughness as the 

constraint using NSGA-II. Hence the objective function 

is formulated as, 

Objective Function: Minimze (flank wear) + Maximize 

(MRR). 

Subject to the constraint: Surface roughness ≤ 2.5 µm. 

Taking equal weightage (50%) to both flank wear and 

MRR and also converting the maximization of MRR to 

minimization of MRR (taking –ve sign), the objective 

function is rewritten as, 
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Objective function = (0.5*flank wear) – (0.5*MRR); 

Subject to the constraint: Surface roughness ≤ 2.5 µm. 

The lower and upper bounds of machining parameters 

are, 

108 ≤ cutting speed ≤ 136 

0.203 ≤ feed rate ≤ 0.432 

0.1 ≤ depth of cut ≤ 0.3 

From the simulation results obtained from NSGA-II, the 

optimum machining parameters are determined as, 

cutting speed of 109.86 m/min; feed rate of 0.3005 

mm/rev and depth of cut of 0.1 mm. The predicted 

output responses during the optimization procedure is, 

flank wear of 0.039 mm, MRR of 0.0106 gm. /min and 

surface roughness of 2.4934 µm. 

The value of combined objective function generated 

during optimization for each generation is shown in Fig. 

4. It is observed that initially the objective function is 

close to 0.047 and as the number of generation 

increases; the combined objective function converges 

towards minimization of objective function and finally 

settles around 0.014. It is also observed that the 

convergence of combined objective function is faster 

towards the final optimum result. 

The Pareto-optimal set is the non-dominated set in the 

entire space. The many solutions trading-off between 

two objectives minimization of flank wear and 

maximization of MRR is shown in Fig. 5. It is observed 

that one solution is better than the other in both 

objectives and for certain other pair of points, one 

solution is better than other in one objective and is 

worse in the another objective. When this happens 

between two solutions, it is called as non-dominated 

solution as shown. 

The variation of flank wear for each generation during 

optimization procedure is shown in Fig. 6. It is 

observed that the flank wear values is initially 0.0418 

mm and finally it settles to 0.039 mm. The aim is to 

lower the flank wear and the results obtained shows that 

the flank wear is lowered during the optimization 

process. 

The variation of MRR during the optimization process 

is shown in Fig. 7. During the process, initially the 

MRR values are lower at after some generations it 

settles to a higher value of 0.0106 gm./min. The aim of 

obtaining higher MRR is achieved through this 

optimization procedure. 

Based on the optimum machining parameters 

determined from NSGA-II algorithm as cutting speed of 

109.86 m/min; feed rate of 0.3005 mm/rev and depth of 

cut of 0.1 mm, an confirmation experiment is conducted 

and the output responses obtained are given in Table 5 

along with the predicted output responses obtained from 

the simulation result. It is observed that a reduction in 

flank wear by 58.65% and surface roughness by 10.56% 

is obtained when comparing the results with average 

experimental values. A reduction in MRR by 58.06% is 

achieved due to the value of surface roughness 

constraint chosen which satisfies the chosen objective.  
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Figure 4 Variation of Combined objective function with 

generations 
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Figure 5 Pareto Optimal front between Flank wear and 

MRR 

Table 5 Results of confirmation experiment based on 

NSGA-II output 

Sl. 

No 

Output 

Response 

Predicted 

Responses 

Experimental 

Output 

1 Flank wear 0.039 0.034 

2 Surface 

roughness 

2.493 2.28 

3 MRR 0.0106 0.013 
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Figure 6 Variation of Flank wear during optimization 
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Figure 7 Variation of MRR during optimization 

6. CONCLUSION  

The conclusions derived by applying a meta-heuristic 

evolutionary NSGA-II algorithm on turning AISI 4340 

steel with carbide cutting inserts are as follows. 

 Multiple Linear regression models were developed 

for the output responses flank wear, surface 

roughness and MRR using Minitab software. 

 The optimum machining parameters are determined 

as cutting speed of 109.86 m/min; feed rate of 0.3005 

mm/rev and depth of cut of 0.1 mm using NSGA-II. 

The predicted output responses are flank wear of 

0.039 mm, MRR of 0.0106 gm. /min and surface 

roughness of 2.4934 µm with a combined objective 

function values of 0.014. 

 The Pareto-optimal set is the non-dominated set in the 

entire space which shows a solution trading-off 

between two objectives minimization of flank wear 

and maximization of MRR. 

 Confirmation experiment performed with optimum 

conditions obtained using NSGA-II shows a 

reduction in flank wear by 58.65%, surface roughness 

by 10.56% and MRR by 58.06% is obtained when 

comparing the results with average experimental 

values. 
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