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ABSTRACT 

Wrought heat treatable aluminum magnesium silicon alloys per AA 6061-T6 are of medium strength and have 

excellent weldability compared to high strength aluminum alloys. This class of alloys is therefore widely used in ship 

frames, storage tanks and aircraft applications. It is not possible to use all kinds of aluminum manufacturing processes. 

Because most aluminum alloys are hardened, fusion welding cannot be applied because the high heat generated during 

the process will cause them to lose some of their properties, making them unable to perform their intended function. In 

1991, the Welding Institute (TWI) invented a new technology in the welding process and named it Friction Stir 

Welding (FSW). FSW is a solid-state welding process in which parts are joined together at a solidifying temperature. 

The strength of the weld is affected by the grain size and the tensile strength of the core region of the weld. Therefore, 

an attempt was made to develop an artificial neural network and predict a data set related to the FSW engine and 

process parameters. Experimental relationships to predict grain size and tensile strength of frictional AA 6061-T6 

aluminum alloy welds. The empirical relationships are developed by a fully factorial design. A linear regression 

relationship was also established between grain size and weld core tensile strength of FSW joints.  

Keywords- Aluminum 6061-T6 S Alloy, Artificial Neural Network, Friction Stir Welding (FSW), Tensile strength 

of FSW joints, Welding Parameters. 

1. INTRODUCTION 

Metal joining is a method of joining two or more 

materials by external means. There is a huge demand 

for metal joining due to limitations of producing a 

large part design or complicated by conventional 

manufacturing processes such as casting, forging, 

rolling and extrusion, etc. Welding is a manufacturing 

technique that joins materials, usually metals or 

thermoplastics, causing adhesion. Welding is one of 

the essential and widely used manufacturing processes 

in any manufacturing/manufacturing industry. The 

main goal of welding technology is to achieve optimal 

conditions for perfect joints. There are mainly two 

types of welding; one is fusion welding and the other 

is solid state welding. In fusion welding, a heat source 

is used to melt the material and after melting pressure 

is applied to join the materials but solid-state welding 

is done below the melting temperature of the 

components. division, such as (FSW). Friction-stirring 

welding (FSW) is an emerging energy-saving, 

attractive and environmentally friendly solid-state 

welding process invented in 1991 by the Welding 

Institute (TWI) in the UK [5]. FSW offers many 

advantages over conventional fusion welding 

techniques, such as the absence of expensive 

consumable fillers, good mechanical and metallurgical 

properties of the formed joint, and no solidification 

cracks., no voids, low distortion and lower power 

consumption [6]. Initially, this float welding technique 

was used for aluminum [7] but later it was used to join 

magnesium [8], titanium [5], copper [9] and also iron 

alloys [10]. A non-consumable tool cylindrical tool is 

rotated at a constant speed and is inserted/plunged in-

between the two separate worksheets or plates to be 

joined and subsequently fed at a constant rate along 

the joint line as shown in fig1.1. 
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Heat is generated within the workpiece and tool due to 

friction between the rotating tool shoulder and pin 

with the workpiece and by severe plastic deformation 

of the workpiece materials. Materials become soften 

around the pin and welding occurs while traversing 

along the welding direction. The main function of the 

non-consumable rotating tool pin is to stir the 

plasticized metal and move the same behind it to have 

a defect-free joint. 

1.1. Tool Design and Its Role in Welding 

Tool design is an important factor in improving both 

the quality of the weld or the strength of the resulting 

joint and the maximum welding speed that can lead to 

improved productivity. The design of the tool consists 

of two parts shoulder and peg. During FSW, most of 

the heat is generated by friction between the tool 

shoulder and the part as the shoulder strikes the part. 

This heat helps to soften the material and after 

softening, the tool pin plays a decisive role in the 

welding process. The main function of the non-

consumable rotary tool pin is to stir the ductile metal 

and move it back for a good joint. The pin 

configuration plays an important role in the material 

flow. Pin tools usually have straight cylindrical 

stapling tool, tapered cylinder stapling tool, 

trapezoidal stapling tool, triangle stapling tool, straight 

square stapling tool, thread stapling tool, taper thread 

stapling tool, pentagon pin and hexagon pin tool as 

shown in fig.1.2. 

1.2.  Welding Forces 

The downward force is required to maintain the 

position of the tool above or below the surface of the 

material. This force is increased when the tool is 

inserted into the material or mainly when the shoulder 

touches the part. The horizontal force acts parallel to 

the tool movement and is positive in the welding 

direction. Since this force is the result of the material's 

resistance to tool motion. The transverse force can be 

applied perpendicular to the tool's transverse direction 

and is defined here as positive in the forward direction 

of the weld. Torque is required to rotate the tool; the 

amount of this torque will depend on the downward 

force and the coefficient of friction (sliding friction) 

and the flow force of the material in the surrounding 

area (sticky friction) [ 6].  

2. OBJECTIVES 

The objective of the paper is divided into two parts. 

The first objective is to predict the output values 

corresponding to the input values by using an artificial 

neural network in MATLAB. The second objective of  

 

Fig.1.1. FSW process 
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this paper is to study the effect of FSW input variables 

on microstructure and tensile strength of the welded 

joint using Minitab. Different input parameters have a 

significant influence on the FSW joint, they are tool 

rotational speed, welding speed, axial force, tool 

shoulder diameter, pin diameter, tool hardness. Proper 

controlling of these parameters helps to reduce the 

formation of defects in the joint. There is different 

software available for FSW simulation, in this work, 

iterative analysis is done by using the MATLAB. The 

mathematical model is created by MINITAB. The 

main objectives of this thesis are to predict the values 

of microstructure and tensile strength using the 

iterative analysis software tool (MATLAB ANN 

toolbox) for the selected input parameters and to 

investigate the effect of FSW input parameters on 

tensile strength and microstructure. To estimate the 

optimum levels of input parameters 

3. METHODOLOGY 

An artificial neural network created using the 

MATLAB toolbox. In addition, the collected data set 

is imported into the neuron and then trained the neuron 

to get a better regression and performance curve. Then 

simulate the sample data in the neuron and get the 

output of the network. These outputs are fed into the 

MINITAB software and analysis begins. The input 

and output data set of the paper "Establishment of 

empirical relationship to predict grain size and tensile 

strength of aluminium alloy 6061-T6 friction welded 

joint and factorial design have been collected" The full 

three levels are performed using the MINITAB 

software. A neural network model was created using 

MATLAB software and imported the dataset into 

neurons and trained the neurons to get better  

 

 

 

 

regression and performance curves, and validate the 

network. Simulate the neural network with sample 

data and collect the output of the neural network. The 

second step is to collect the output of the neural 

network as a design board response in MINITAB 

software. Analyse the full factorial design and perform 

residual plots for each parameter and perform 

regression models. Repeat ANOVA to obtain a 

statistically significant model and obtain a 

mathematical equation for each response parameter. 

Obtain key effects and interaction effects to analyse 

the influence of input parameters on response 

parameters.   

3.1. Artificial Neural network’s architecture 

Artificial neural networks are mathematical 

representations of how the human brain works. The 

human brain is a typical model of an adaptive 

computer, capable of learning to respond to new inputs 

based on previous experience. It contains several 

billion neurons that are linked together to form a 

network. Electrical signals travel through the brain, 

traveling from one neuron to another through the 

axons that connect them in Figure 3.1.  

 

 

 

Fig.1.2. different pin profiles 

Fig.3.1. Neurons receive and transmit signals in the brain. 
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At each neuron, all incoming signals are combined and 

the amplitude is compared with the trigger threshold 

value. If the threshold value of a neuron is exceeded, 

it sends a signal to all the neurons it is connected to for 

further signal processing. These biological neurons are 

the source of the mathematical models of neural 

networks. The "central" element of a neural network is 

the neuron. Neurons are connected by a set of links, 

called synapses, and each synapse is described by a 

synaptic weight. Neurons are placed in layers, and 

neurons in each layer work in parallel. The first layer 

is the input layer. Input unit activity represents 

unprocessed information that has been fed into the 

network; In this layer, the neurons do not do any 

calculations. The hidden layers follow the input layer, 

and the activity of each hidden unit is determined from 

the activity of the input units and the weights at the 

connections of the input and hidden units. A network 

can have many or no hidden layers and their role is to 

improve the performance of the network as shown in 

Figure 3.2.  

 

 

 

The existence of these layers at the network level 

becomes more necessary as the number of input 

neurons increases. The last layer is the output layer. 

The behaviour of the output units depends on the 

operation of the hidden units and the weights between 

the hidden and output units. The output of the layer is 

the output of the entire network; neurons of the output 

layer, unlike the input layers, perform calculations.  

There are two types of neural networks forward and 

recurring feeds. The feed-forwarding neural network 

allows the signal to travel in one direction, from input 

to output, i.e., the output signal of one neuron is the 

input of the neurons of the next layer and never vice 

versa. The input of the first layer is considered as the 

input signal of the whole network, and the output of the 

network is the output signal of the neurons of the last 

layer. In contrast, recurrent networks include feedback 

loops that allow signals to move forward and/or 

backward. The first stage of forward propagation 

occurs when the network is exposed to the training data 

and the data goes through the entire neural network to 

compute their predictions (labels). In other words, we 

route the input data through the network so that each 

neuron transforms the data received from the neurons 

of the previous layer and transmits it to the neurons of 

the following layer. The final layer produces label 

prediction results for these input samples after the data 

has travelled through all of the other levels and all of 

its neurons have finished their calculations. The loss 

function is then employed to calculate the loss (or 

error) and assess how well or poorly the projected 

result compares to the actual result. Once the loss has 

been determined, this data will be returned. This is why 

it is known as backpropagation. All hidden layer 

neurons that directly affect the output receive this loss 

information from the output layer. Based on the 

proportional contributions of each neuron to the initial 

output, buried layer neurons, however, only get a 

portion of the total missing signal. Until every neuron 

in the network receives a loss signal indicating their 

relative contribution to the total loss, this process is 

repeated layer by layer.  

 The learning algorithm starts with (often random) 

values for the network parameters (weights in wij and 

biases in bj). It takes a set of samples of the input data, 

passes them through the network to get predictions, 

compares these obtained predictions to the expected 

label values, and computes the loss. Perform 

backpropagation to propagate this loss to each 

parameter that makes up the neural network model, and 

use this propagated information to update the neural 

network parameters with gradient descent, reducing the 

overall loss. Help us get a better model. Repeat the 

previous steps until you feel you have a good model.  

3.2. Analysis in Minitab 

Originally designed as a tool for teaching statistics, 

Minitab is a general-purpose statistical software 

package designed to be interactive and easy to use. 

Minitab is well suited for educational use, but 

powerful enough to be used as a primary analysis tool 

for research data. The first step is to analyse the FSW 

Fig.3.2. Neuron model. 
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process and create a factor design table to enter the 

factor names and levels. Finally, the design board is 

created. Insert response parameters and factorial 

design analysis. Perform factor diagram and 

regression analysis for each answer. Get statistically 

significant samples using repeated ANOVA for 

reliable results. 

 

 

                                                                                              

 

4. RESULTS AND DISCUSSIONS 

By using the artificial neural network to predict the 

output response corresponding to the input design as 

in the design table. The analysis is done with the 

output response and to find the input parameter for the 

optimum conditions of the output response. 

4.1. Artificial Neural Network 

The neuron model was created using the NN 

toolbox in MATLAB and to input the input and output 

feedback from [36]. Train the network for optimal 

performance, regression and training curves. Power 

curves show neuron performance. It consists of 

training, validation, and test curves, as shown in 

Figure 4.1. Power curves plotted in MSE versus epoch. 

The best validation performance is 181.9123 at epoch 

43. An epoch is a measure of how many times every 

training vector is used once to update the weights. In 

batch training, all training patterns are run 

simultaneously in the training algorithm for one epoch 

before the weights are updated. The root mean squared 

error function is a fundamental performance function 

 

 

 

 

that directly affects the network. Such error reduction 

will lead to an efficient system. The training curve 

(blue curve) progresses with the Mean Squared Error 

(MSE) value decreasing, which means that the neuron 

training has minimal error with the target value. The 

red curve is the neuron test curve and the green curve 

is the validation curve, these two curves change 

gradually, while minimizing the MSE. So, we have 

better simulation results. The training curve shows the 

training state of the neuron at the training stage as 

shown in Figure 4.2. The regression line consists of 

four histograms: training regression, validation 

regression, test regression, and global regression as 

shown in figure 4. 3. The integer regression values are 

in the range of 0.99, which means the value is suitable 

for prediction predict the data and the error will be 

minimal or negligible. The sample is simulated using 

the neural network and exported the network output as 

shown in table 4.1. 

 

 

 

TABLE.3.1. Design table 
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Fig.4.1. Performance curve. Fig.4.2. Training state. 

Fig.4.3. Regression graph. 

TABLE.4.1. Network output 
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4.2. MINITAB Analysis 

A fully factorial design is one in which researchers 

measure responses to all combinations of factor levels. 

The number of runs required for a full 2-level factorial 

design is 2k, where K is the number of factors. In our 

work we work with 6 elements with 3 levels, 

so we chose the general full factorial design.  

The weld nugget size and tensile strength are response 

factors and tool rotation speed, welding speed, axial 

force, tool shoulder diameter, spindle diameter and 

tool stiffness are parameters. number of inputs for the 

design. Analysing these factors in a full factorial 

design yields the remaining histograms of the 

individual response factor. The residual plots contain 

graphs of normal probability, vs fit, histogram, vs 

order, as shown in Figures 4.4 and 4.5. A residual plot 

is a graph used to test fit in regression and ANOVA. 

By examining the remaining cells, you can determine 

whether the ordinary least-squares assumptions are 

met. If these assumptions are met, ordinary least-

squares regression produces unbiased coefficient 

estimates with minimal variance.   

 

 

Sl.no Weld Nugget Grain Size(Μm) Tensile Strength (Mpa) 

1 77.51006 146.6985 

2 80.88226 141.5462 

3 80.49316 146.8263 

4 55.50958 179.4671 

5 91.05074 125.3541 

6 51.50391 180.3982 

7 69.34828 164.8372 

8 56.95988 177.9051 

9 63.97783 164.6354 

10 40.66451 191.6283 

11 48.76775 181.9123 

12 30.67212 209.9548 

13 43.3155 197.064 

14 61.32025 166.933 

15 48.04868 190.788 



Anandhu V.A et al. Journal of Advanced Engineering Research, 2023, 10 (2), 248-261 

Research Article                                                                          255                                                                   www.jaeronline.com 

 

 

50250-25-50

99.99

99

90

50

10

1

0.01

Residual

P
e

rc
e

n
t

8070605040

50

25

0

-25

-50

Fitted Value

R
e

si
d

u
a

l

37.525.012.50.0-12.5-25.0-37.5

60

45

30

15

0

Residual

F
re

q
u

e
n

cy

70
0

65
0

60
0

55
0

50
0

45
0

40
0

35
0

30
0

25
0

20
0

15
0

10
0501

50

25

0

-25

-50

Observation Order

R
e

si
d

u
a

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for weld nugget grain size

 

 

 

 

 

  Fig.4.4. S-curve implies a distribution with long tails. Fig.4.5. Inverted S-curve implies a distribution with 

short tails. 

Fig.4.6. Residual plots for weld nugget grain size. 
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The normal probability plot of the residuals should 

approximate a straight line. The samples shown in the 

figure violate the assumption that the residuals are 

normally distributed. The S-curve implies a long-

tailed distribution. The inverted S-curve implies a 

short-tailed distribution. Use the normal probability 

plot of the residuals to test the assumption that the 

residuals are normally distributed. The normal 

probability histogram of the residuals should 

approximate a straight line. 

When conducting a residual analysis, a "residuals 

versus fits plot" is the most frequently created plot. It 

is a scatter plot of residuals on the y axis 

and fitted values (estimated responses) on the x axis. 

The plot is used to detect non-linearity, unequal error 

variances, and outliers.  

The residuals are displayed in the data collection order 

in a residual vs. ordinal graphic. To verify the notion 

that the residuals are independent, use the residuals vs. 

order plot. If independent residuals are analysed 

chronologically, no trends or patterns are apparent. 

The distribution of the points would suggest that 

correlated residuals are less likely to be independent 

than those that are near in space. The plot residuals 

ought to be randomly distributed around the central 

line. 

A histogram is a display that indicates the frequency 

of specified ranges of continuous data values on a 

graph in the form of immediately adjacent bars. 

Interval An interval is a range of data in a data set. 

Each rectangle represents the numbers of frequencies 

that lie within that particular class 

interval. Analyse the histogram to see whether it 

represents normal distribution whole values of 

residual are fit with the residual plots of each response 

so that the design is good. 

The main effects and interaction effects are also 

plotted to predict the optimum condition of the input 

parameters for the sound welded joint (quality 

responses). The main effects plot displays the means 

for each group within a categorical variable. 

 

Fig.4.7. Residual plots for tensile strength. 
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Fig.4.8. Main effect plots for tensile strength. 

Fig.4.9. Interaction effect plots for tensile strength. 
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The main and interaction effects are plotted as shown 

in fig.4.8 and fig.4.9 of tensile strength.  To analyse 

the main effects plots for tensile strength, the 

rotational speed is 924 rpm, welding speed is 

12.430mm/min, the axial force is 5.62kN, shoulder 

diameter is 7.86mm, pin diameter 2.62mm and 

hardness are 956HV. These whole values didn’t break 

the mean line so that got a better result with these 

combinations. 

4.2.1. Regression Analysis. 

The statistically significant mathematical model is 

achieved by using the regression analysis. The residual 

plots of regression analysis with the response of weld 

nugget grain size and tensile strength as shown in the 

fig.4.6 and fig.4.7. The residual plots contain normal 

probability plot, versus fits, histogram, and versus 

order graphs. All the graphs are fitted with the residue. 

The p-value is a measure of the strength of the 

evidence in the data against H 0(null hypothesis). 

Usually, the smaller the p-value, the stronger the 

sample evidence is for rejecting H 0. The least value of 

that causes H 0 to be rejected is the p-value, to be more 

precise. When the value of the p-test is more than 0.05, 

we do an ANOVA. ANOVA is a statistical method 

used to determine if the means of two or more groups 

differ from one another substantially. ANOVA 

compares the means of various samples to examine the 

influence of one or more factors. 

The numerous actions The ANOVA family includes 

ANOVA. Because it compares the mean scores of two 

groups on various observations, the repeated measures 

ANOVA is comparable to the dependent sample T-

Test.  The cases in one observation must be closely 

related to the cases in all other observations for the 

repeated measures ANOVA to be valid. Using 

repeated observations as the basis, the repeated 

measures ANOVA compares means for one or more 

variables.  The number of independent variables in a 

repeated measures ANOVA model can either be zero 

or more.  Once more, at least one dependent variable 

in a repeated measures ANOVA has more than one 

observation. 

5. CONCLUSIONS 

In conclusion, the generation of a neural model to 

achieve perfect welds (negative welds) of FSW was 

performed on AA 6061-T6 aluminium alloy by 

combining six input parameters (speed rotation, 

welding speed, longitudinal force, shoulder diameter, 

glass pin and tool stiffness). Generate residual, 

principal effects, and interactive effects diagrams of 

friction stirrups. The developed relationships can be 

effectively used to predict grain size and tensile 

strength of AA6061-T6 friction welded aluminium 

alloy joints in the range.  
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